GNSS : comprendre les fondements du positionnement par satellite
Le positionnement GNSS est utilisé dans de nombreuses applications professionnelles, notamment en topographie, en travaux publics ou pour la gestion des réseaux. Il repose sur des constellations de satellites et des méthodes de calcul complexes permettant de déterminer une position précise. Décryptage du fonctionnement des systèmes GNSS et des causes courantes de dégradation de la précision. GNSS : au-delà du GPS Le terme « GPS » est souvent utilisé à tort pour désigner l’ensemble des technologies de positionnement par satellite. En réalité, le GPS n’est que l’un des systèmes disponibles. Le terme approprié est GNSS (Global Navigation Satellite System), qui regroupe l’ensemble des constellations actives : GPS (États-Unis) GLONASS (Russie) GALILEO (Union Européenne) BEIDOU (Chine) Certaines régions bénéficient également de systèmes locaux complémentaires, comme QZSS au Japon. Principes de calcul de position Un récepteur GNSS calcule sa position à partir de la distance mesurée entre lui et plusieurs satellites. Chaque satellite émet en permanence un signal contenant des informations temporelles précises. En mesurant le temps mis par ce signal pour atteindre le récepteur, on peut en déduire une distance. Ce processus est appelé trilatération. Pour déterminer une position complète (latitude, longitude, altitude) et corriger le décalage d’horloge du récepteur, au moins quatre satellites sont nécessaires. L’utilisation de constellations multiples permet d’augmenter le nombre de satellites visibles et donc la précision et la fiabilité du positionnement. Contenu des signaux GNSS Chaque satellite émet un signal composé de plusieurs éléments. Ces structures de signal sont définies dans la spécification officielle du système GPS, IS-GPS-200, publiée par le Département de la Défense des États-Unis : Données de navigation : incluent les paramètres orbitaux et les corrections d’horloge. À quoi servent les éphémérides ? Les éphémérides sont des données orbitales que chaque satellite GNSS transmet dans ses messages de navigation. Elles décrivent la trajectoire du satellite sur une période donnée et sont indispensables au récepteur pour reconstituer la position exacte du satellite au moment de l’émission du signal. Il en existe deux types : Les éphémérides diffusées, calculées par les centres de contrôle GNSS, transmises en temps réel dans les signaux satellites. Les éphémérides précises, produites par des organismes comme l’IGS (International GNSS Service), utilisées pour des traitements plus exigeants en précision, notamment en post-traitement. Une erreur dans les éphémérides peut entraîner une erreur de positionnement allant jusqu’à plusieurs mètres. Leur qualité est donc un paramètre essentiel dans tout calcul GNSS précis. Les éphémérides précises sont notamment produites par des organismes comme l’IGS (International GNSS Service), qui fournit des données orbitales et temporelles de référence utilisées dans les solutions PPP. Code pseudo-aléatoire (PRN) : permet d’identifier le satellite et de calculer le temps de parcours du signal. Onde porteuse : signal radiofréquence servant de support aux autres données. La distance satellite–récepteur peut être calculée de deux manières : Par le code PRN, avec une précision de l’ordre du mètre. Par la phase de l’onde porteuse, avec une précision centimétrique, mais nécessitant des traitements complexes pour lever les ambiguïtés (cycle slips, nombre entier de cycles, etc.). Comprendre l’ambiguïté de la phase porteuse La mesure de la phase d’une onde porteuse permet d’atteindre une précision bien supérieure à celle obtenue par le code. Cependant, elle présente une particularité : le récepteur peut mesurer la phase reçue, mais ne connaît pas le nombre exact de cycles entiers parcourus entre le satellite et lui. C’est ce qu’on appelle l’ambiguïté de phase. Pour convertir la mesure en une distance absolue, il est donc nécessaire de « résoudre l’ambiguïté », c’est-à-dire estimer correctement ce nombre de cycles entiers. Cette opération est cruciale dans les techniques de positionnement comme RTK ou PPP, où la précision dépend directement de la qualité de cette résolution. Un mauvais « fix » de l’ambiguïté conduit à une erreur systématique pouvant atteindre plusieurs centimètres, voire plus. D’où l’importance des algorithmes embarqués dans les récepteurs haut de gamme, capables de détecter, modéliser et corriger ces incertitudes. La résolution d’ambiguïté est largement documentée dans la littérature, notamment dans le Springer Handbook of GNSS (Teunissen & Montenbruck, 2017), ouvrage de référence sur le sujet. Principales sources d’erreurs GNSS Plusieurs facteurs influencent la précision du positionnement. Les erreurs peuvent provenir : Des satellites : Erreurs d’horloge : bien que les satellites soient équipés d’horloges atomiques, des dérives minimes peuvent engendrer plusieurs mètres d’écart. Erreurs d’orbite : des écarts subsistent entre la position théorique du satellite et sa position réelle. De l’atmosphère : Délai ionosphérique : causé par les particules chargées dans la haute atmosphère, dépend des conditions solaires. Délai troposphérique : causé par l’humidité et la pression dans les basses couches de l’atmosphère. Du récepteur : Dérive de l’horloge interne Erreur liée à l’environnement local : effet multi-trajets, obstacles, interférences. Les cycle slips, une source d’erreur intermittente mais critique Un cycle slip correspond à une rupture brutale dans le suivi de la phase d’une onde porteuse par le récepteur GNSS. Cela se produit généralement lorsqu’un obstacle temporaire (véhicule, bâtiment, végétation) bloque ou perturbe le signal, même brièvement. Lorsque la liaison est rétablie, le récepteur reprend la mesure de phase, mais l’ambiguïté précédente n’est plus valable : il faut la réestimer. Si cette détection est mal faite, elle peut entraîner une erreur invisible mais durable. Les récepteurs performants, comme Proteus, disposent de mécanismes de détection automatique des cycle slips et peuvent relancer les algorithmes de résolution d’ambiguïté en conséquence. Leur gestion efficace est déterminante dans les environnements complexes (urbains, forestiers, chantiers encombrés). Précision du traitement du signal : dépend de la qualité du matériel et des algorithmes utilisés. Type d’erreur Origine Ordre de grandeur Dérive d’horloge satellite Segment spatial jusqu’à 3 m Erreur d’orbite Segment spatial ±2,5 m Délai ionosphérique Atmosphère (50–1000 km) 5 à 50 m Délai troposphérique Atmosphère (0–12 km) 2 à 10 m Multi-trajets Récepteur/environnement variable (mètres) Bruit de mesure interne Récepteur centimétrique à décimétrique Amélioration de la précision : corrections GNSS Pour atteindre une précision centimétrique, le positionnement GNSS doit être corrigé. Plusieurs techniques existent selon les besoins et les conditions d’utilisation : RTK (Real Time Kinematic) NRTK (Network Real Time Kinematic) : utilise
GNSS : comprendre les fondements du positionnement par satellite Read Post »